
This work presents a non-convex variational approach to joint image reconstruction and labeling. Our regularization strategy, based on the KL-divergence, takes into account the smooth geometry on the space of discrete probability distributions. The proposed objective function is efficiently minimized via DC programming which amounts to solving a sequence of convex programs, with guaranteed convergence to a critical point. Each convex program is solved by a generalized primal dual algorithm. This entails the evaluation of a proximal mapping, evaluated efficiently by a fixed point iteration. We illustrate our approach on few key scenarios in discrete tomography and image deblurring.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
