Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ TECNALIA Publication...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
TECNALIA Publications
Conference object . 2016
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Probabilistic Sample Matchmaking Strategy for Imbalanced Data Streams with Concept Drift

Authors: L. Lobo, Jesus; Del Ser, Javier; Bilbao, Miren Nekane; Laña, Ibai; Salcedo-Sanz, Sancho;

A Probabilistic Sample Matchmaking Strategy for Imbalanced Data Streams with Concept Drift

Abstract

In the last decade the interest in adaptive models for non-stationary environments has gained momentum within the research community due to an increasing number of application scenarios generating non-stationary data streams. In this context the literature has been specially rich in terms of ensemble techniques, which in their majority have focused on taking advantage of past information in the form of already trained predictive models and other alternatives alike. This manuscript elaborates on a rather different approach, which hinges on extracting the essential predictive information of past trained models and determining therefrom the best candidates (intelligent sample matchmaking) for training the predictive model of the current data batch. This novel perspective is of inherent utility for data streams characterized by short-length unbalanced data batches, situation where the so-called trade-off between plasticity and stability must be carefully met. The approach is evaluated on a synthetic data set that simulates a non-stationary environment with recurrently changing concept drift. The proposed approach is shown to perform competitively when adapting to a sudden and recurrent change with respect to the state of the art, but without storing all the past trained models and by lessening its computational complexity in terms of model evaluations. These promising results motivate future research aimed at validating the proposed strategy on other scenarios under concept drift, such as those characterized by semi-supervised data streams.

Country
Spain
Keywords

Concept Drift, Imbalanced data, Adaptive Learning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green