
Consensus is one of the fundamental problems in multi-agent systems and distributed computing, in which agents or processing nodes are required to reach global agreement on some data value, decision, action, or synchronisation. In the absence of centralised coordination, achieving global consensus is challenging especially in dynamic and large-scale distributed systems with faulty processes. This paper presents a fully decentralised phase transition protocol to achieve global consensus on the convergence of an underlying information dissemination process. The proposed approach is based on Epidemic protocols, which are a randomised communication and computation paradigm and provide excellent scalability and fault-tolerant properties. The experimental analysis is based on simulations of a large-scale information dissemination process and the results show that global agreement can be achieved without deterministic and global communication patterns, such as those based on centralised coordination.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
