
In this chapter, we describe two numerical finite difference methods which are used for solving differential equations, e.g., the Euler method and Euler-Cromer method. The emphasis here is on algorithm errors, and an explanation of what is meant by the “order” of the error. We show that the Euler method introduces an error of order 2, denoted as \( \mathscr {O}(2),\) while the latter presents errors of order \(\mathscr {O}(3)\). We finish the chapter by applying the methods to two important physical problems: the physics of the pendulum and the physics of descending parachutes.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
