
The recent technical advances in functional expression of olfactory receptors (OR s) make full deorphanization of human OR repertoire a realistic objective. Such a global knowledge of the precise mechanisms of odorant/receptor pairings will represent a crucial step for the development of an accurate model of how human nose perceives its chemical environment. Beyond its interest for basic science, it will also lead to the development of industrial applications such as receptor-based odorant design, development of selective odor blockers or enhancers and represents therefore an interesting opportunity for players active in the field of flavors and fragrances. Here, we will describe and discuss a high-throughput screening approach that aims at the objective of human OR mass deorphanization. However, the completion of this ambitious task is not a prerequisite to the development of commercial applications. With the expanding number of deorphanized ORs, structure–activity relationship studies on OR responding to an odorant of interest has already started. Likewise, the use of the screening approach to identify either blockers for malodor-responding ORs or positive enhancers of fine fragrance-tuned ORs is underway. These different aspects will also be discussed. Finally, beyond the human ORs, other classes of human chemoreceptors for volatiles as well as animal chemoreceptors may also represent industrial opportunities that will be briefly reviewed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
