Downloads provided by UsageCounts
handle: 11386/4655587
Test case prioritization (TCP) is aimed at finding an ideal ordering for executing the available test cases to reveal faults earlier. To solve this problem greedy algorithms and meta-heuristics have been widely investigated, but in most cases there is no statistically significant difference between them in terms of effectiveness. The fitness function used to guide meta-heuristics condenses the cumulative coverage scores achieved by a test case ordering using the Area Under Curve (AUC) metric. In this paper we notice that the AUC metric represents a simplified version of the hypervolume metric used in many objective optimization and we propose HGA, a Hypervolume-based Genetic Algorithm, to solve the TCP problem when using multiple test criteria. The results shows that HGA is more cost-effective than the additional greedy algorithm on large systems and on average requires 36 % of the execution time required by the additional greedy algorithm.
Test case prioritization, Genetic algorithm, Hypervolume
Test case prioritization, Genetic algorithm, Hypervolume
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 6 | |
| downloads | 13 |

Views provided by UsageCounts
Downloads provided by UsageCounts