
Tryptophan, an essential amino acid, can be metabolized to several kinds of physiologically active metabolites. Accumulating data indicate that an altered metabolism of tryptophan and its active metabolites have important roles for the pathogenesis and development of complications of diabetes mellitus. Changes in tryptophan–kynurenine and tryptophan–methoxyindole pathways are related to several pathophysiological mechanisms of type 1 or type 2 diabetes. Particularly, serotonin, melatonin, and their receptors would be novel targets not only to better understand the pathogenesis of diabetes but also to develop new antidiabetic agents.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
