<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Artificial neural network (ANN) and support vector machine (SVM) based classifier design by a meta-heuristic called Co-Operation of Biology Related Algorithms (COBRA) is presented. For the ANN’s structure selection the modification of COBRA that solves unconstrained optimization problems with binary variables is used. The ANN’s weight coefficients are adjusted with the original version of COBRA. For the SVM-based classifier design the original version of COBRA and its modification for solving constrained optimization problems are used. Three text categorization problems from the DEFT’07 competition were solved with these techniques. Experiments showed that all variants of COBRA demonstrate high performance and reliability in spite of the complexity of the solved optimization problems. ANN-based and SVM-based classifiers developed in this way outperform many alternative methods on the mentioned benchmark classification problems. The workability of the proposed meta-heuristic optimization algorithms was confirmed.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |