
We present a clausal resolution-based method for normal multimodal logics of confluence, whose Kripke semantics are based on frames characterised by appropriate instances of the Church-Rosser property. Here we restrict attention to eight families of such logics. We show how the inference rules related to the normal logics of confluence can be systematically obtained from the parametrised axioms that characterise such systems. We discuss soundness, completeness, and termination of the method. In particular, completeness can be modularly proved by showing that the conclusions of each newly added inference rule ensures that the corresponding conditions on frames hold. Some examples are given in order to illustrate the use of the method.
15 pages, 1 figure. Preprint of the paper accepted to IJCAR 2014
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Sequent Calculus, Cut-Elimination, Modal logic, Logic in Computer Science (cs.LO)
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Sequent Calculus, Cut-Elimination, Modal logic, Logic in Computer Science (cs.LO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
