
In this paper, we present an algorithm for trigonometric interpolation of multivariate functions on generalized sparse grids and study its application for the approximation of functions in periodic Sobolev spaces of dominating mixed smoothness. In particular, we derive estimates for the error and the cost. We construct interpolants with a computational cost complexity which is substantially lower than for the standard full grid case. The associated generalized sparse grid interpolants have the same approximation order as the standard full grid interpolants, provided that certain additional regularity assumptions on the considered functions are fulfilled. Numerical results validate our theoretical findings.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
