
In this chapter we study the Cauchy problems for one-dimensional scalar conservation laws. In particular, we prove that the Cauchy problem is well posed in the class of entropy weak solutions, in the sense that it admits a unique entropy weak solution. The existence of the solutions is proved by the method of wave front tracking. The uniqueness is proved by showing the Kružkov result of the L1 contractiveness of the flow generated by a scalar conservation law.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
