Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ontogeny of Substantia Nigra Dopamine Neurons

Authors: R, Orme; R A, Fricker-Gates; M A, Gates;

Ontogeny of Substantia Nigra Dopamine Neurons

Abstract

Understanding the ontogeny of A9 dopamine (DA) neurons is critical not only to determining basic developmental events that facilitate the emergence of the substantia nigra pars compacta (SNc) but also to the extraction and de novo generation of DA neurons as a potential cell therapy for Parkinson's disease. Recent research has identified a precise window for DA cell birth (differentiation) in the ventral mesencephalon (VM) as well as a number of factors that may facilitate this process. However, application of these factors in vitro has had limited success in specifying a dopaminergic cell fate from undifferentiated cells, suggesting that other cell/molecular signals may as yet remain undiscovered. To resolve this, current work seeks to identify particularly potent and novel DA neuron differentiation factors within the developing VM specifically at the moment of ontogeny. Through such (past and present) studies, a catalog of proteins that play a pivotal role in the generation of nigral DA neurons during normal CNS development has begun to emerge. In the future, it will be crucial to continue to evaluate the critical developmental window where DA neuron ontogeny occurs, not only to facilitate our potential to protect these cells from degeneration in the adult brain but also to mimic the developmental environment in a way that enhances our ability to generate these cells anew either in vitro or in vivo. Here we review our present understanding of factors that are thought to be involved in the emergence of the A9 dopamine neuron group from the ventral mesencephalon.

Related Organizations
Keywords

Neurons, Substantia Nigra, Dopamine, Animals, Humans, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!