Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantitative structure - activity relationships of cardiotonic agents

Authors: S P, Gupta;

Quantitative structure - activity relationships of cardiotonic agents

Abstract

Quantitative structure-activity relationships (QSARs) of different cardiotonic agents are presented. A critical analysis of all QSARs provides a very vivid picture of the mechanisms of varying cardiotonic agents. The cardiotonics can be broadly put into 2 categories: cardiac glycosides and nonglycoside cardiotonics, which include phosphodiesterase of type III (PDE III) inhibitors, sympathomimetic (adrenergic) stimulants, A1-selective adenosine antagonists, Ca2+ channel activators and vasopressin antagonists. For cardiac glycosides, QSARs reveal that the position of carbonyl oxygen in their lactone moiety and shifting of the lactone ring from its original position or its replacement by another group would be crucial for their activity. The carbonyl group or its isostere like CN is indicated to be the sole binding entity and the hydrogen bonding through this group is considered to be the most likely binding force. For nonglycoside cardiotonics that include PDE III inhibitors and A1-selective antagonists, a five-point model has been established for their activity, the salient features of which are: (1) the presence of a strong dipole, (2) an adjacent acidic proton, (3) a methyl-sized lipophilic space, (4) a relatively flat overall topography and (5) a basic or hydrogen-bond acceptor site opposite to the dipole. For Ca2+ channel activators, the importance of steric, electrostatic, lipophilic and hydrogen-bonding properties of molecules is indicated, while for vasopressin antagonists the lipophilic and electronic properties are suggested to be the most important.

Keywords

Cardiotonic Agents, Animals, Humans, Quantitative Structure-Activity Relationship

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!