
arXiv: 2502.20197
In computer architecture courses, we usually teach RISC processors using a five-stage pipeline, neglecting alternative organizations. This design choice, rooted in the 1980s technology, may not be optimal today, and it is certainly not the easiest pipeline for education. This paper examines more straightforward pipeline organizations for RISC processors that are suitable for educational purposes and for implementing embedded processors in FPGAs and ASICs. We analyze resource costs and maximum clock frequency of various designs implemented in an FPGA, using clock frequency as a performance proxy. Additionally, we validate these results with ASIC designs synthesized using the open-source SkyWater130 process. Contradictory to common wisdom, a longer pipeline (up to 5 stages) does not necessarily always increase the maximum clock frequency. In two FPGA and one ASIC implementation, we discovered that a four- or five-stage pipeline leads to a slower clock frequency than a three-stage implementation. The reason is that the width of the forwarding multiplexer in the execution stage increases with longer pipelines, which is on the critical path. We also argue that a 3-stage pipeline organization is more adequate for teaching a pipeline organization of a microprocessor.
14 pages, 2 figures
FOS: Computer and information sciences, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture
FOS: Computer and information sciences, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
