Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Rule-Based Modeling Approach for Studying Animal Collectives: A Case Study of Juvenile Honeybee Thermotaxis

Authors: Bouguéon, Matthieu; Petrov, Tatjana; Salazar, Albin;

A Rule-Based Modeling Approach for Studying Animal Collectives: A Case Study of Juvenile Honeybee Thermotaxis

Abstract

Biological collectives, ranging from social insects like ants, honeybees to vertebrate groups such as bird flocks, fish schools, have long served as a rich source of inspiration for designing and deploying artificial systems, including robotic swarms. However, a persistent challenge lies in bridging the gap between individual-level behavior and the emergent collective dynamics. Classical equation-based models often fall short in this regard, as the micro-to-macro link are hard to interpret or modify, since this link is not explicit. In this paper, we propose the rule-based modeling language Kappa for modelling biological collectives. Unlike approaches that directly model emergent behavior through equations, Kappa allows one to observe the collective behavior emerging from local, mechanistic interaction rules. These rules are both intuitive to interpret and easy to edit, allowing modelers to design and conduct in silico perturbation experiments at the level of individual agents. In addition, once written in Kappa, the collective dynamics can not only be explored through simulation, but also subject to advanced formal analysis techniques, such as model ab- straction or causal queries. We demonstrate our approach through a case study of thermotaxis-driven aggregation in juvenile honeybees. Specifi- cally, we investigate how heterogeneous compositions of agents influence aggregation at spatial areas with optimal temperature.

Related Organizations
Keywords

collective behavior · rule-based modeling · formal methods · swarm robotics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!