Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-Rennes 1arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Rennes 1
Conference object . 2026
Data sources: HAL-Rennes 1
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PMNS Arithmetic for Elliptic Curve Cryptography

Authors: Fangan Yssouf Dosso; Sylvain Duquesne; Nadia El Mrabet; Emma Gautier;

PMNS Arithmetic for Elliptic Curve Cryptography

Abstract

We show that using the polynomial modular number system (PMNS) can be relevant for real-world cryptographic applications even in terms of performance. More specifically, we consider elliptic curves for cryptography when pseudo-Mersenne primes cannot be used to define the base field (e.g. Brainpool standardized curves, JubJub curves in the zkSNARK context, pairing-friendly curves). All these primitives make massive use of the Montgomery reduction algorithm and well-known libraries such as GMP or OpenSSL for base field arithmetic. We show how this arithmetic can be replaced by PMNS, a number system with very high parallelisation capability, no carry propagation, which allows efficient arithmetic randomization. We provide good PMNS bases in the cryptographic context mentioned above, together with a C implementation that is competitive with GMP and OpenSSL for performing basic operations in the base fields considered. We also integrate this arithmetic into the Rust reference implementation of elliptic curve scalar multiplication for Zero-knowledge applications, and achieve better practical performances for such protocols. This shows that PMNS is an attractive alternative for the base field arithmetic layer in cryptographic primitives using elliptic curves or pairings.

Keywords

Brainpool, Pairings, JubJub, Cryptography, Elliptic curves, Polynomial Modular Number System Cryptography Elliptic curves Pairings Brainpool JubJub, [MATH] Mathematics [math], Polynomial Modular Number System, [INFO.INFO-CR] Computer Science [cs]/Cryptography and Security [cs.CR]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green