
pmid: 39523280
Cerebrospinal fluid (CSF) plays a critical role in the healthy function of the brain, yet the mechanics of CSF flow remain poorly understood. Computational fluid dynamics is a powerful tool capable of resolving the spatiotemporal evolution of CSF pressures and velocities, but technical and methodological limitations have limited the clinical use of CFD to date. With improvements in medical imaging, computational power, and machine learning, however, CFD may be on the cusp of breaking through into the medical mainstream. In this chapter, we will review the applications of CFD of CSF, present our methodological recommendations for conducting CFD of CSF, present the results of a novel CFD methodology incorporating patient-specific tissue displacements, and discuss the barriers and pathways to clinically useful CFD simulation.
Cerebrospinal Fluid Pressure, Hydrodynamics, Humans, Brain, Computer Simulation, Cerebrospinal Fluid
Cerebrospinal Fluid Pressure, Hydrodynamics, Humans, Brain, Computer Simulation, Cerebrospinal Fluid
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
