Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theoretical Computer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Theoretical Computer Science
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Observation Routes and External Watchman Routes

Authors: Adrian Dumitrescu; Csaba D. Tóth;

Observation Routes and External Watchman Routes

Abstract

We introduce the Observation Route Problem ($\textsf{ORP}$) defined as follows: Given a set of $n$ pairwise disjoint compact regions in the plane, find a shortest tour (route) such that an observer walking along this tour can see (observe) some point in each region from some point of the tour. The observer does \emph{not} need to see the entire boundary of an object. The tour is \emph{not} allowed to intersect the interior of any region (i.e., the regions are obstacles and therefore out of bounds). The problem exhibits similarity to both the Traveling Salesman Problem with Neighborhoods ($\textsf{TSPN}$) and the External Watchman Route Problem ($\textsf{EWRP}$). We distinguish two variants: the range of visibility is either limited to a bounding rectangle, or unlimited. We obtain the following results: (I) Given a family of $n$ disjoint convex bodies in the plane, computing a shortest observation route does not admit a $(c\log n)$-approximation unless $\textsf{P} = \textsf{NP}$ for an absolute constant $c>0$. (This holds for both limited and unlimited vision.) (II) Given a family of disjoint convex bodies in the plane, computing a shortest external watchman route is $\textsf{NP}$-hard. (This holds for both limited and unlimited vision; and even for families of axis-aligned squares.) (III) Given a family of $n$ disjoint fat convex polygons, an observation tour whose length is at most $O(\log{n})$ times the optimal can be computed in polynomial time. (This holds for limited vision.) (IV) For every $n \geq 5$, there exists a convex polygon with $n$ sides and all angles obtuse such that its perimeter is \emph{not} a shortest external watchman route. This refutes a conjecture by Absar and Whitesides (2006).

20 pages, 11 figures. (A 15-page extended abstract of this paper will appear in the proceedings of WADS 2023.)

Keywords

Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Computational Geometry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid