Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Spiral - Imperial Co...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Systems Biology in Asthma

Authors: Kermani, NZ; Adcock, IM; Djukanović, R; Chung, F; Schofield, JPR;

Systems Biology in Asthma

Abstract

The application of mathematical and computational analysis, together with the modelling of biological and physiological processes, is transforming our understanding of the pathophysiology of complex diseases. This systems biology approach incorporates large amounts of genomic, transcriptomic, proteomic, metabolomic, breathomic, metagenomic and imaging data from disease sites together with deep clinical phenotyping, including patient-reported outcomes. Integration of these datasets will provide a greater understanding of the molecular pathways associated with severe asthma in each individual patient and determine their personalised treatment regime. This chapter describes some of the data integration methods used to combine data sets and gives examples of the results obtained using single datasets and merging of multiple datasets (data fusion and data combination) from several consortia including the severe asthma research programme (SARP) and the Unbiased Biomarkers Predictive of Respiratory Disease Outcomes (U-BIOPRED) consortia. These results highlight the involvement of several different immune and inflammatory pathways and factors in distinct subsets of patients with severe asthma. These pathways often overlap in patients with distinct clinical features of asthma, which may explain the incomplete or no response in patients undergoing specific targeted therapy. Collaboration between groups will improve the predictions obtained using a systems medicine approach in severe asthma.

Keywords

Proteomics, 570, Systems Biology, 610, Genomics, Respiration Disorders, Clustering, Asthma, Imaging, Next generation sequencing, General & Internal Medicine, Metabolomics, Humans, Data integration, Metagenomics, Severe asthma research programm (SARP), Heterogeneity, Transcriptomics, Breathomics, Unbiased Biomarkers Predictive of Respiratory Disease Outcomes (U-BIOPRED) consortium, 11 Medical and Health Sciences, Biomarkers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
Related to Research communities