<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Semi-supervised learning is highly useful in common scenarios where labeled data is scarce but unlabeled data is abundant. The graph (or nonlocal) Laplacian is a fundamental smoothing operator for solving various learning tasks. For unsupervised clustering, a spectral embedding is often used, based on graph-Laplacian eigenvectors. For semi-supervised problems, the common approach is to solve a constrained optimization problem, regularized by a Dirichlet energy, based on the graph-Laplacian. However, as supervision decreases, Dirichlet optimization becomes suboptimal. We therefore would like to obtain a smooth transition between unsupervised clustering and low-supervised graph-based classification. In this paper, we propose a new type of graph-Laplacian which is adapted for Semi-Supervised Learning (SSL) problems. It is based on both density and contrastive measures and allows the encoding of the labeled data directly in the operator. Thus, we can perform successfully semi-supervised learning using spectral clustering. The benefits of our approach are illustrated for several SSL problems.
12 pages, 6 figures
Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Machine Learning (cs.LG)
Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |