Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY NC ND
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Summarizing Labeled Multi-graphs

Authors: Dimitris Berberidis; Pierre J. Liang; Leman Akoglu;

Summarizing Labeled Multi-graphs

Abstract

Real-world graphs can be difficult to interpret and visualize beyond a certain size. To address this issue, graph summarization aims to simplify and shrink a graph, while maintaining its high-level structure and characteristics. Most summarization methods are designed for homogeneous, undirected, simple graphs; however, many real-world graphs are ornate; with characteristics including node labels, directed edges, edge multiplicities, and self-loops. In this paper we propose LM-Gsum, a versatile yet rigorous graph summarization model that (to the best of our knowledge, for the first time) can handle graphs with all the aforementioned characteristics (and any combination thereof). Moreover, our proposed model captures basic sub-structures that are prevalent in real-world graphs, such as cliques, stars, etc. LM-Gsum compactly quantifies the information content of a complex graph using a novel encoding scheme, where it seeks to minimize the total number of bits required to encode (i) the summary graph, as well as (ii) the corrections required for reconstructing the input graph losslessly. To accelerate the summary construction, it creates super-nodes efficiently by merging nodes in groups. Experiments demonstrate that LM-Gsum facilitates the visualization of real-world complex graphs, revealing interpretable structures and high- level relationships. Furthermore, LM-Gsum achieves better trade-off between compression rate and running time, relative to existing methods (only) on comparable settings.

17 pages, 8 figures, 4 tables

Keywords

Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer Science - Databases, Computer Science - Social and Information Networks, Databases (cs.DB)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green