
Semiconductor device operation depends on the speed of carriers, electrons and holes, which is determined by the mobility. The mobility μ is expressed by e〈Τ〉/m*, where e, 〈Τ〉, and m* are the electronic charge, average of the relaxation time, and the effective mass. The relaxation time or scattering time is limited by various scatterings of carriers. Among them the phonon scattering plays the most important role. In this chapter we begin with the analysis of the lattice vibrations and the derivation of Boltzmann transport equation. Then collision time, relaxation time and mobility are defined. The transition probabilities and transition matrix elements for the scattering due to various modes of phonons, impurity, electron–electron interaction and so on are evaluated using quantum mechanical approach. These results are used to evaluate scattering rates and relaxation times, and finally respective carrier mobility is obtained. Also a method to evaluate deformation potentials for phonon scattering is given, where the lattice vibrations and the calculated energy band structures are employed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
