<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We present several neural networks to address the task of named entity recognition for morphologically complex languages (MCL). Kazakh is a morphologically complex language in which each root/stem can produce hundreds or thousands of variant word forms. This nature of the language could lead to a serious data sparsity problem, which may prevent the deep learning models from being well trained for under-resourced MCLs. In order to model the MCLs' words effectively, we introduce root and entity tag embedding plus tensor layer to the neural networks. The effects of those are significant for improving NER model performance of MCLs. The proposed models outperform state-of-the-art including character-based approaches, and can be potentially applied to other morphologically complex languages.
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL), Information Retrieval (cs.IR), Computer Science - Information Retrieval
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL), Information Retrieval (cs.IR), Computer Science - Information Retrieval
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |