Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BCAM's Institutional...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Learning a Battery of COVID-19 Mortality Prediction Models by Multi-objective Optimization

Authors: Mario Martínez-García; Susana García-Gutierrez; Rubén Armañanzas; Adrián Díaz; Iñaki Inza; Jose A. Lozano;

Learning a Battery of COVID-19 Mortality Prediction Models by Multi-objective Optimization

Abstract

The COVID-19 pandemic is continuously evolving with drastically changing epidemiological situations which are approached with different decisions: from the reduction of fatalities to even the selection of patients with the highest probability of survival in critical clinical situations. Motivated by this, a battery of mortality prediction models with different performances has been developed to assist physicians and hospital managers. Logistic regression, one of the most popular classifiers within the clinical field, has been chosen as the basis for the generation of our models. Whilst a standard logistic regression only learns a single model focusing on improving accuracy, we propose to extend the possibilities of logistic regression by focusing on sensitivity and specificity. Hence, the log-likelihood function, used to calculate the coefficients in the logistic model, is split into two objective functions: one representing the survivors and the other for the deceased class. A multi-objective optimization process is undertaken on both functions in order to find the Pareto set, composed of models not improved by another model in both objective functions simultaneously. The individual optimization of either sensitivity (deceased patients) or specificity (survivors) criteria may be conflicting objectives because the improvement of one can imply the worsening of the other. Nonetheless, this conflict guarantees the output of a battery of diverse prediction models. Furthermore, a specific methodology for the evaluation of the Pareto models is proposed. As a result, a battery of COVID-19 mortality prediction models is obtained to assist physicians in decision-making for specific epidemiological situations.

This research is supported by the Basque Government (IT1504- 22, Elkartek) through the BERC 2022–2025 program and BMTF project, and by the Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-0718 and PID2019-104966GB-I00. Furthermore, the work is also supported by the AXA Research Fund project “Early prognosis of COVID-19 infections via machine learning”.

Country
Spain
Keywords

Classification evaluation, Multi-objetive optimization, Mortality Prediction, COVID-19

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Related to Research communities