<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.11824/1515
The COVID-19 pandemic is continuously evolving with drastically changing epidemiological situations which are approached with different decisions: from the reduction of fatalities to even the selection of patients with the highest probability of survival in critical clinical situations. Motivated by this, a battery of mortality prediction models with different performances has been developed to assist physicians and hospital managers. Logistic regression, one of the most popular classifiers within the clinical field, has been chosen as the basis for the generation of our models. Whilst a standard logistic regression only learns a single model focusing on improving accuracy, we propose to extend the possibilities of logistic regression by focusing on sensitivity and specificity. Hence, the log-likelihood function, used to calculate the coefficients in the logistic model, is split into two objective functions: one representing the survivors and the other for the deceased class. A multi-objective optimization process is undertaken on both functions in order to find the Pareto set, composed of models not improved by another model in both objective functions simultaneously. The individual optimization of either sensitivity (deceased patients) or specificity (survivors) criteria may be conflicting objectives because the improvement of one can imply the worsening of the other. Nonetheless, this conflict guarantees the output of a battery of diverse prediction models. Furthermore, a specific methodology for the evaluation of the Pareto models is proposed. As a result, a battery of COVID-19 mortality prediction models is obtained to assist physicians in decision-making for specific epidemiological situations.
This research is supported by the Basque Government (IT1504- 22, Elkartek) through the BERC 2022–2025 program and BMTF project, and by the Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-0718 and PID2019-104966GB-I00. Furthermore, the work is also supported by the AXA Research Fund project “Early prognosis of COVID-19 infections via machine learning”.
Classification evaluation, Multi-objetive optimization, Mortality Prediction, COVID-19
Classification evaluation, Multi-objetive optimization, Mortality Prediction, COVID-19
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |