
AbstractThe Prandtl’s equations for laminar boundary layer are obtained via dimensional analysis. The case of the flat plate is treated as a suitable example for the development of the boundary layer on a simple geometry. Various thicknesses are introduced. The integration of Prandtl’s equation across the boundary layer produces the von Kármán integral equation which allows the elaboration of the approximate von Kármán-Pohlhausen method where the velocity profile is given as a polynomial. The use of a third degree polynomial for the flat plate demonstrates the feasibility of the approach.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
