<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 2434/934615
Quantum compiling fills the gap between the computing layer of high-level quantum algorithms and the layer of physical qubits with their specific properties and constraints. Quantum compiling is a hybrid between the general-purpose compilers of computers, transforming high-level language to assembly language and hardware synthesis by hardware description language, where functions are automatically synthesized into customized hardware. Here we review the quantum compiling stack of both gate model quantum computers and the adiabatic quantum computers, respectively. The former involves low level qubit control, quantum error correction, synthesis of short quantum circuits, transpiling, while the latter involves the virtualization of qubits by embedding of QUBO and HUBO problems on constrained graphs of physical qubits and both quantum error suppression and correction. Commercial initiatives and quantum compiling products are reviewed, including explicit programming examples.
37 pages, 8 figures
FOS: Computer and information sciences, Quantum Physics, Emerging Technologies (cs.ET), Computer Science - Emerging Technologies, FOS: Physical sciences, Quantum Physics (quant-ph)
FOS: Computer and information sciences, Quantum Physics, Emerging Technologies (cs.ET), Computer Science - Emerging Technologies, FOS: Physical sciences, Quantum Physics (quant-ph)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |