
AbstractIn this chapter, the support vector machines (svm) methods are studied. We first point out the origin and popularity of these methods and then we define the hyperplane concept which is the key for building these methods. We derive methods related to svm: the maximum margin classifier and the support vector classifier. We describe the derivation of the svm along with some kernel functions that are fundamental for building the different kernels methods that are allowed in svm. We explain how the svm for binary response variables can be expanded for categorical response variables and give examples of svm for binary and categorical response variables with plant breeding data for genomic selection. Finally, general issues for adopting the svm methodology for continuous response variables are provided, and some examples of svm for continuous response variables for genomic prediction are described.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
