
Hashing is an effective and widely used technology for fast approximate nearest neighbor search in large-scale images. In recent years, it has been combined with a powerful feature learning model, convolutional neural network(CNN), to boost the efficiency of large-scale image retrieval. In this paper, we introduce a new Deep Double Center Hashing (DDCH) network to learn hash codes with higher discrimination between different people and compact hash codes between the same person for large-scale face image retrieval. Our method uses a deep neural network to learn image features as well as hash codes. We use a deep CNN to extract image features and a multi-layer neural network as the hash function. The whole model is trained end-to-end. In order to learn compact and discriminative hash codes, we impose a compact constraint on the codes to force lower intra-class variations of the codes. Our constraint is formulated as a center-loss over the learned codes, which encourages hash codes to be near the hash center of the same class. In addition, new discrete hashing modules and multi-scale fusion are designed to capture discriminative and multi-scale information. We conduct experiments on the most popular datasets, YouTubeFaces and FaceScrub, and demonstrates the efficient performance of DDCH over the state-of-the-art face image hashing methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
