<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The interfacial region between two bodies of turbulent fluid was investigated through simultaneous particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) experiments in the far wake of a circular cylinder. Interface conditioned plots of enstrophy revealed the existence of a turbulent/turbulent interface (TTI) where the enstrophy adjusts itself between the two regions. An enstrophy jump was present even in the most extreme cases of subjected free-stream turbulence. Further analysis of the TTI through the lens of the enstrophy budget equation highlighted the altered roles of inertia and viscosity in the vicinity of the TTI. Unlike the turbulent/non-turbulent interface (TNTI), the inertial term is largely responsible for enstrophy production in the outer regions of the interface, whilst viscosity plays a much more subdued role. The global effects of free-stream turbulence on entrainment behaviour was investigated through the measurement of the mean entrainment flux. It was shown that an increase in intensity of the free-stream turbulence acted to reduce the mean entrainment flux into the wake. Length scale of the background turbulence on the other hand did not greatly influence entrainment behaviour in the far wake of a circular cylinder.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |