
Injecting real-world information (typically contained in Knowledge Graphs) and human expertise into an end-to-end training pipeline for Natural Language Processing models is an open challenge. In this preliminary work, we propose to approach the task of Named Entity Recognition, which is traditionally viewed as a Sequence Labeling problem, as a Graph Classification problem, where every word is represented as a node in a graph. This allows to embed contextual information as well as other external knowledge relevant to each token, such as gazetteer mentions, morphological form, and linguistic tags. We experiment with a variety of graph modeling techniques to represent words, their contexts, and external knowledge, and we evaluate our approach on the standard CoNLL-2003 dataset. We obtained promising results when integrating external knowledge through the use of graph representation in comparison to the dominant end-to-end training paradigm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
