
Vision-based grape yield estimation provides a cost-effective solution for intelligent orchards. However, unstructured background, occlusion and dense berries make it challenging for grape yield estimation. We propose an efficient two-stage pipeline TSGYE: precise detection of grape clusters and efficient counting of grape berries. Firstly, high-precision grape clusters are detected using object detectors, such as Mask R-CNN, YOLOv2/v3/v4. Secondly, based on the detected clusters, berry counted through image processing technology. Experimental results show that TSGYE with YOLOv4 achieves 96.96% mAP@0.5 score on WGISD, better than the state-of-the-art detectors. Besides we manually annotate all test images of WGISD and make it public with a grape berry counting benchmark. Our work is a milestone in grape yield estimation for two reasons: we propose an efficient two-stage grape yield estimation pipeline TSGYE; we offer a public test set in grape berry counting for the first time.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
