
In recent years, financial events in the stock market have increased dramatically. Extracting valuable information automatically from massive financial documents can provide effective support for the analysis of financial events. This paper just proposes an end-to-end document-level subject pair recognition method. It aims to recognize the subject pair, i.e. the subject and the object of an event. Given one document and the predefined event type set, this method will output all the corresponding subject pairs related to each event type. Subject pair recognition is certainly a document-level extraction task since it needs to scan the entire document to output desired subject pairs. This paper constructs a global document-level vector based on sentence-level vectors which are encoded from BERT. The global document-level vector aims to cover the information carried by the entire document. It is utilized to guide the extraction process conducted sentence by sentence. After considering global information, our method obtains superior experimental results.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
