
arXiv: 1912.11165
Sequential pattern mining is an interesting research area with broad range of applications. Most prior research on sequential pattern mining has considered point-based data where events occur instantaneously. However, in many application domains, events persist over intervals of time of varying lengths. Furthermore, traditional frameworks for sequential pattern mining assume all events have the same weight or utility. This simplifying assumption neglects the opportunity to find informative patterns in terms of utilities, such as cost. To address these issues, we incorporate the concept of utility into interval-based sequences and define a framework to mine high utility patterns in interval-based sequences i.e., patterns whose utility meets or exceeds a minimum threshold. In the proposed framework, the utility of events is considered while assuming multiple events can occur coincidentally and persist over varying periods of time. An algorithm named High Utility Interval-based Pattern Miner (HUIPMiner) is proposed and applied to real datasets. To achieve an efficient solution, HUIPMiner is augmented with a pruning strategy. Experimental results show that HUIPMiner is an effective solution to the problem of mining high utility interval-based sequences.
To appear in Proceedings of the 22nd International Conference on Big Data Analytics and Knowledge Discovery (DaWaK2020), Bratislava, Slovakia, September 14-17. Springer, 2020
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
