Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Liver Tumor Microenvironment

Authors: Timothy M. Pawlik; Diamantis I. Tsilimigras; Ioannis Ntanasis-Stathopoulos; Dimitrios Moris;

Liver Tumor Microenvironment

Abstract

The tumor microenvironment (TME) has recently been recognized as an important part of tumor development and growth. TME is a dynamic system orchestrated by immune, cancer and inflammatory cells, as well as the stromal tissue and surrounding extracellular matrix. While TME of primary hepatic tumors is usually characterized by a strong inflammatory background, the TME of liver metastases typically consists of otherwise healthy liver tissue. Chronic inflammation and hypoxia are key to the development and progression of primary liver cancer. The injury caused by chronic inflammation creates a condition of immune evasion that initiates a cascade of events that eventually leads to liver carcinogenesis.With liver metastases, primary tumors "prime" the target organs via secreting factors that induce expansion of myeloid cell populations and create a solid ground for successful cancer settlement. Once in the liver, metastatic cells begin a neovascularization process that is driven mainly by VEGF and FGF. Due to high mortality rates associated with liver cancer, as well as the limited effective treatment options for advanced disease, new therapies are urgently needed. Targeting a single molecule in a number of interactions between the tumor and the TME is highly unlikely to reduce tumor growth. Future trials should focus on combination therapies (i.e. targeted therapies combined with immunotherapy) to treat liver malignancies efficiently.

Keywords

Carcinogenesis, Liver Neoplasms, Tumor Microenvironment, Humans, Immunotherapy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?