
A dominating set in a hypergraph H with vertex set V (H) and E(H) is a subset of vertices D ⊆ V (H) such that for every vertex v ∈ V (H) ∖ D, there exists an edge e ∈ E(H) for which v ∈ e and e ∩ D≠∅. A total dominating set in H is a dominating set D of H with the additional property that for every vertex v in D, there exists an edge e ∈ E(H) for which v ∈ e and e ∩ (D ∖{v})≠∅. The domination number γ(H) and the total domination number γt(H) are the minimum cardinalities of a dominating set and total dominating set, respectively, in H. This chapter presents an overview of research on domination and total domination in hypergraphs.
Dominating set, Total dominating set, Hypergraph domination
Dominating set, Total dominating set, Hypergraph domination
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
