<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
With reference to an axial compressor stage, a procedure for the calculation of kinematic parameters at mean diameter (Sect. 4.1), thermodynamic parameters (Sect. 4.2), geometric parameters (Sect. 4.3), parameters in the radial direction (Sect. 4.4) and stage losses (Sect. 4.5) is provided. Then, Sect. 4.6 discusses the input parameters of this procedure and suggests their numerical values to be used in the calculations. Finally, Sect. 4.7 illustrates the procedure for extending calculations to multistage compressors. The numerical application of the proposed procedure, aimed at the preliminary design of multistage axial compressors, is instead developed in Chap. 8.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |