Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

Evaluation of Side-Channel Key-Recovery Attacks on LoRaWAN End-Device

Authors: Kazuhide Fukushima; Damien Marion 0001; Yuto Nakano; Adrien Facon; Shinsaku Kiyomoto; Sylvain Guilley;

Evaluation of Side-Channel Key-Recovery Attacks on LoRaWAN End-Device

Abstract

IoT devices have come into widespread use. The rapid growth of the IoT market is expected in the field of automobiles and transportation, medical and health care, and industry. Data protection and integrity are critical for IoT-based services in order to maintain the security and privacy of them. Low-power wide-area (LPWA) is a wireless communication technology designed for IoT applications and end-devices requiring low cost, long battery life, wide-area coverage, and high system capacity. LoRaWAN is an open standard for LPWA and achieves data protection and integrity by using encryption and message integrity code (MIC). Many studies have pointed out security issues, and attacks against LPWA protocols and have proposed solutions to improve security against such attacks. However, side-channel analysis techniques can directly recover secret information from a device. In this paper, we evaluate the applicability of a side-channel analysis to a real LoRaWAN end-device. Our experiments attempt to recover AES-128 keys to encrypt frame payload and calculate the message integrity code (MIC) for the encrypted payload based on a correlation power analysis, which is a type of side-channel analysis. The 260 electromagnetic(EM)-leakage traces entirely recover the 16-byte key for the frame payload encryption, and the 140 EM-leakage traces recover the 12 bytes of the 16-byte key for MIC generation. Furthermore, we show that our key recovery attack is applicable in real LoRaWAN protocols. Our attack can entirely recover the root key AppKey in LoRaWAN v1.0 and a root key NwkKey in LoRaWAN v1.1.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!