Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adjoint Representations and the Derivative of exp

Authors: Jocelyn Quaintance; Jean Gallier;

Adjoint Representations and the Derivative of exp

Abstract

In this chapter, in preparation for defining the Lie bracket on the Lie algebra of a Lie group, we introduce the adjoint representations of the group \(\mathbf {GL}(n, {\mathbb {R}})\) and of the Lie algebra \({\mathfrak {gl}}(n, {\mathbb {R}})\). The map \(\mathrm {Ad}\colon \mathbf {GL}(n, {\mathbb {R}})\rightarrow \mathbf {GL}({\mathfrak {gl}}(n, {\mathbb {R}}))\) is defined such that AdA is the derivative of the conjugation map \(\mathbf {Ad}_A{\colon } \mathbf {GL}(n, {\mathbb {R}})\rightarrow \mathbf {GL}(n, {\mathbb {R}})\) at the identity. The map ad is the derivative of Ad at the identity, and it turns out that adA(B) = [A, B], the Lie bracket of A and B, and in this case, [A, B] = AB − BA. We also find a formula for the derivative of the matrix exponential exp. This formula has an interesting application to the problem of finding a natural sets of real matrices over which the exponential is injective, which is used in numerical linear algebra.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?