
Classical orthogonal polynomials (Hermite, Laguerre, Jacobi and Bessel) constitute the most important families of orthogonal polynomials. They appear in mathematical physics when Sturn-Liouville problems for hypergeometric differential equation are studied. These families of orthogonal polynomials have specific properties. Our main aim is to: 1. recall the definition of classical continuous orthogonal polynomials; 2. prove the orthogonality of the sequence of the derivatives; 3. prove that each element of the classical orthogonal polynomial sequence satisfies a second-order linear homogeneous differential equation; 4. give the Rodrigues formula.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
