Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://dx.doi.org/10...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.1007/978-...
Part of book or chapter of book
License: Springer Nature TDM
Data sources: Sygma
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic Partitioning of Evolving Graph Streams Using Nature-Inspired Heuristics

Authors: Osaba, Eneko; Bilbao, Miren Nekane; Iglesias, Andres; Del Ser, Javier; Galvez, Akemi; Fister, Iztok; Fister, Iztok;

Dynamic Partitioning of Evolving Graph Streams Using Nature-Inspired Heuristics

Abstract

Detecting communities of interconnected nodes is a frequently addressed problem in situation that be modeled as a graph. A common practical example is this arising from Social Networks. Anyway, detecting an optimal partition in a network is an extremely complex and highly time-consuming task. This way, the development and application of meta-heuristic solvers emerges as a promising alternative for dealing with these problems. The research presented in this paper deals with the optimal partitioning of graph instances, in the special cases in which connections among nodes change dynamically along the time horizon. This specific case of networks is less addressed in the literature than its counterparts. For efficiently solving such problem, we have modeled and implements a set of meta-heuristic solvers, all of them inspired by different processes and phenomena observed in Nature. Concretely, considered approaches are Water Cycle Algorithm, Bat Algorithm, Firefly Algorithm and Particle Swarm Optimization. All these methods have been adapted for properly dealing with this discrete and dynamic problem, using a reformulated expression for the well-known modularity formula as fitness function. A thorough experimentation has been carried out over a set of 12 synthetically generated dynamic graph instances, with the main goal of concluding which of the aforementioned solvers is the most appropriate one to deal with this challenging problem. Statistical tests have been conducted with the obtained results for rigorously concluding the Bat Algorithm and Firefly Algorithm outperform the rest of methods in terms of Normalized Mutual Information with respect to the true partition of the graph.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Funded by