
arXiv: 1811.06449
Along the years, supersymmetric quantum mechanics (SUSY QM) has been used for studying solvable quantum potentials. It is the simplest method to build Hamiltonians with prescribed spectra in the spectral design. The key is to pair two Hamiltonians through a finite order differential operator. Some related subjects can be simply analyzed, as the algebras ruling both Hamiltonians and the associated coherent states. The technique has been applied also to periodic potentials, where the spectra consist of allowed and forbidden energy bands. In addition, a link with non-linear second order differential equations, and the possibility of generating some solutions, can be explored. Recent applications concern the study of Dirac electrons in graphene placed either in electric or magnetic fields, and the analysis of optical systems whose relevant equations are the same as those of SUSY QM. These issues will be reviewed briefly in this paper, trying to identify the most important subjects explored currently in the literature.
33 pages, 2 figures, submitted as a contribution to the monographic volume "Integrability, Supersymmetry and Coherent States", a volume in honour of Professor V\'eronique Hussin, small changes done, references added
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
