
This chapter considers the problem of minimizing the expectation of a reward for a controlled Markov chain process, either with a finite horizon, or an infinite one for which the reward has discounted values, including the cases of exit times and stopping decisions. The value and policy (Howard) iterations are compared. Extensions of these results are provided for problems with expectations constraints, partial observation, and for the ergodic case, limit in some sense of large horizon problems with undiscounted cost.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
