Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DSpace@MIT (Massachu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Algorithmica
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Opinion Dynamics with Limited Information

Opinion dynamics with limited information
Authors: Dimitris Fotakis; Vardis Kandiros; Vasilis Kontonis; Stratis Skoulakis;

Opinion Dynamics with Limited Information

Abstract

AbstractWe study opinion formation games based on the famous model proposed by Friedkin and Johsen (FJ model). In today’s huge social networks the assumption that in each round agents update their opinions by taking into account the opinions of all their friends is unrealistic. So, we are interested in the convergence properties of simple and natural variants of the FJ model that use limited information exchange in each round and converge to the same stable point. As in the FJ model, we assume that each agent i has an intrinsic opinion $$s_i \in [0,1]$$ s i ∈ [ 0 , 1 ] and maintains an expressed opinion $$x_i(t) \in [0,1]$$ x i ( t ) ∈ [ 0 , 1 ] in each round t. To model limited information exchange, we consider an opinion formation process where each agent i meets with one random friend j at each round t and learns only her current opinion $$x_j(t)$$ x j ( t ) . The amount of influence j imposes on i is reflected by the probability $$p_{ij}$$ p ij with which i meets j. Then, agent i suffers a disagreement cost that is a convex combination of $$(x_i(t) - s_i)^2$$ ( x i ( t ) - s i ) 2 and $$(x_i(t) - x_j(t))^2$$ ( x i ( t ) - x j ( t ) ) 2 . An important class of dynamics in this setting are no regret dynamics, i.e. dynamics that ensure vanishing regret against the experienced disagreement cost to the agents. We show an exponential gap between the convergence rate of no regret dynamics and of more general dynamics that do not ensure no regret. We prove that no regret dynamics require roughly $$\varOmega (1/\varepsilon )$$ Ω ( 1 / ε ) rounds to be within distance $$\varepsilon $$ ε from the stable point of the FJ model. On the other hand, we provide an opinion update rule that does not ensure no regret and converges to $$x^*$$ x ∗ in $$\tilde{O}(\log ^2(1/\varepsilon ))$$ O ~ ( log 2 ( 1 / ε ) ) rounds. Finally, in our variant of the FJ model, we show that the agents can adopt a simple opinion update rule that ensures no regret to the experienced disagreement cost and results in an opinion vector that converges to the stable point $$x^*$$ x ∗ of the FJ model within distance $$\varepsilon $$ ε in $$\textrm{poly}(1/\varepsilon )$$ poly ( 1 / ε ) rounds. In view of our lower bound for no regret dynamics this rate of convergence is close to best possible.

Keywords

Graph theory, no-regret dynamics, game theory, opinion formation games, opinion dynamics, Algorithms in computer science

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Green
hybrid