Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 1991 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 1997 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

The Finite Element Method

Authors: A. A. Shabana;

The Finite Element Method

Abstract

The approximate methods presented at the end of the preceding chapter for the solution of the vibration problems of continuous systems are based on the assumption that the shape of the deformation of the continuous system can be described by a set of assumed functions. By using this approach, the vibration of the continuous system which has an infinite number of degrees of freedom is described by a finite number of ordinary differential equations. This approach, however, can be used in the case of structural elements with simple geometrical shapes such as rods, beams, and plates. In large-scale systems with complex geometrical shapes, difficulties may be encountered in defining the assumed shape functions. In order to overcome these problems the finite-element method has been widely used in the dynamic analysis of large-scale structural systems. The finite-element method is a numerical approach that can be used to obtain approximate solutions to a large class of engineering problems. In particular, the finite-element method is well suited for problems with complex geometries.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!