
arXiv: 1809.00138
A classical heuristic in software testing is to reward diversity, which implies that a higher priority must be assigned to test cases that differ the most from those already prioritized. This approach is commonly known as similarity-based test prioritization (SBTP) and can be realized using a variety of techniques. The objective of our study is to investigate whether SBTP is more effective at finding defects than random permutation, as well as determine which SBTP implementations lead to better results. To achieve our objective, we implemented five different techniques from the literature and conducted an experiment using the defects4j dataset, which contains 395 real faults from six real-world open-source Java programs. Findings indicate that running the most dissimilar test cases early in the process is largely more effective than random permutation (Vargha-Delaney A [VDA]: 0.76-0.99 observed using normalized compression distance). No technique was found to be superior with respect to the effectiveness. Locality-sensitive hashing was, to a small extent, less effective than other SBTP techniques (VDA: 0.38 observed in comparison to normalized compression distance), but its speed largely outperformed the other techniques (i.e., it was approximately 5-111 times faster). Our results bring to mind the well-known adage, "don't put all your eggs in one basket". To effectively consume a limited testing budget, one should spread it evenly across different parts of the system by running the most dissimilar test cases early in the testing process.
Proceedings of the 19th International Conference on Product-Focused Software Process Improvement
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Test case prioritization, Test diversity, Regression testing, Test similarity
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Test case prioritization, Test diversity, Regression testing, Test similarity
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
