Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
http://dx.doi.org/10.1007/978-...
Part of book or chapter of book
License: Springer TDM
Data sources: Sygma
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Community Detection in Weighted Directed Networks Using Nature-Inspired Heuristics

Authors: Osaba, Eneko; Del Ser, Javier; Camacho, David; Galvez, Akemi; Iglesias, Andres; Fister, Iztok; Fister, Iztok;

Community Detection in Weighted Directed Networks Using Nature-Inspired Heuristics

Abstract

Finding groups from a set of interconnected nodes is a recurrent paradigm in a variety of practical problems that can be modeled as a graph, as those emerging from Social Networks. However, finding an optimal partition of a graph is a computationally complex task, calling for the development of approximative heuristics. In this regard, the work presented in this paper tackles the optimal partitioning of graph instances whose connections among nodes are directed and weighted, a scenario significantly less addressed in the literature than their unweighted, undirected counterparts. To efficiently solve this problem, we design several heuristic solvers inspired by different processes and phenomena observed in Nature (namely, Water Cycle Algorithm, Firefly Algorithm, an Evolutionary Simulated Annealing and a Population based Variable Neighborhood Search), all resorting to a reformulated expression for the well-known modularity function to account for the direction and weight of edges within the graph. Extensive simulations are run over a set of synthetically generated graph instances, aimed at elucidating the comparative performance of the aforementioned solvers under different graph sizes and levels of intra- and inter-connectivity among node groups. We statistically verify that the approach relying on the Water Cycle Algorithm outperforms the rest of heuristic methods in terms of Normalized Mutual Information with respect to the true partition of the graph.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Funded by
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?