<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11585/653064
Over the years, organizations acquired disparate software systems, each answering one specific need. Currently, the desirable outcomes of integrating these systems (higher degrees of automation and better system consistency) are often outbalanced by the complexity of mitigating their discrepancies. These problems are magnified in the decentralized setting (e.g., cross-organizational cases) where the integration is usually dealt with ad-hoc "glue" connectors, each integrating two or more systems. Since the overall logic of the integration is spread among many glue connectors, these solutions are difficult to program correctly (making them prone to misbehaviors and system blocks), maintain, and evolve. In response to these problems, we propose ChIP, an integration process advocating choreographic programs as intermediate artifacts to refine high-level global specifications (e.g., UML Sequence Diagrams), defined by the domain experts of each partner, into concrete, distributed implementations. In ChIP, once the stakeholders agree upon a choreographic integration design, they can automatically generate the respective local connectors, which are guaranteed to faithfully implement the described distributed logic. In the paper, we illustrate ChIP with a pilot from the EU EIT Digital project SMAll, aimed at integrating pre-existing systems from government, university, and transport industry.
Choreographic programming, Integration, [INFO.INFO-SE] Computer Science [cs]/Software Engineering [cs.SE], [INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL]
Choreographic programming, Integration, [INFO.INFO-SE] Computer Science [cs]/Software Engineering [cs.SE], [INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL]
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |