
Let the fractional differential equation (FDE) be $$\displaystyle (D^\alpha _{a_+}y)(t) = f[t,y(t)],\hspace {0.2 cm} \alpha > 0,\hspace {0.2 cm} t > a,$$ with the conditions: $$\displaystyle (D^{\alpha - k}_{a+}y)(a+) = b_k,\hspace {0.2 cm} k = 1,\ldots , n,$$ called also Riemann–Liouville FDE.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
