<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The solution to a mechanical problem begins with the kinematic analysis, the analysis of how a system can move, as opposed to how it actually does move under the influence of a particular set of forces. In this first stage, the essential step is the introduction of coordinates to label the configurations of the system. These might be Cartesian coordinates for the position of a particle, or angular coordinates for the orientation of a rigid body, or some complicated combination of distances and angles. The only conditions are that each physically possible configuration should correspond to a particular set of values of the coordinates; and that, conversely, the coordinates should be independent, which can be understood informally to mean that each set of values of the coordinates should determine a unique configuration. The number of coordinates is called the number of degrees of freedom of the system.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |