
In the past several years, the relationship between chromatin structure and mRNA processing has been the source of significant investigation across diverse disciplines. Central to these efforts was an unanticipated nonrandom distribution of chromatin marks across transcribed regions of protein-coding genes. In addition to the presence of specific histone modifications at the 5' and 3' ends of genes, exonic DNA was demonstrated to present a distinct chromatin landscape relative to intronic DNA. As splicing in higher eukaryotes predominantly occurs co-transcriptionally, these studies raised the possibility that chromatin modifications may aid the spliceosome in the detection of exons amidst vast stretches of noncoding intronic sequences. Recent investigations have supported a direct role for chromatin in splicing regulation and have suggested an intriguing role for splicing in the establishment of chromatin modifications. Here we will summarize an accumulating body of data that begins to reveal extensive coupling between chromatin structure and pre-mRNA splicing.
Histones, Alternative Splicing, Transcription, Genetic, RNA Precursors, Spliceosomes, Exons, Chromatin Assembly and Disassembly, Chromatin, Introns
Histones, Alternative Splicing, Transcription, Genetic, RNA Precursors, Spliceosomes, Exons, Chromatin Assembly and Disassembly, Chromatin, Introns
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
